A Special Class of Explicit Linear Multistep Methods as Basic Methods for the Correction in the Dominant Space Technique
نویسندگان
چکیده
A class of explicit linear multistep methods is suggested as basic methods for the CDS schemes introduced in [3]. These schemes are designed for the numerical solution of certain stiff ordinary differential equations, and operate with dominant eigenvalues, and the corresponding eigenvectors, of the Jacobian. The motivation, and the stability analysis for CDS schemes assumes that the eigensystem is constant. Here methods are introduced that perform particularly well if the eigensystem is not constant. In a certain sense the methods introduced here can be considered explicit approximations to the well-known implicit backward-differentiation formulas used by Gear [6] for the stiff option of his o.d.e. solver.
منابع مشابه
Stability properties of implicit-explicit multistep methods for a class of nonlinear parabolic equations
We consider the discretization of a special class of nonlinear parabolic equations, including the complex Ginzburg–Landau equation, by implicit–explicit multistep methods and establish stability under a best possible linear stability condition.
متن کاملP-stability, TF and VSDPL technique in Obrechkoff methods for the numerical solution of the Schrodinger equation
Many simulation algorithms (chemical reaction systems, differential systems arising from the modeling of transient behavior in the process industries and etc.) contain the numerical solution of systems of differential equations. For the efficient solution of the above mentioned problems, linear multistep methods or Runge-Kutta technique are used. For the simulation of chemical procedures the ra...
متن کامل2-stage explicit total variation diminishing preserving Runge-Kutta methods
In this paper, we investigate the total variation diminishing property for a class of 2-stage explicit Rung-Kutta methods of order two (RK2) when applied to the numerical solution of special nonlinear initial value problems (IVPs) for (ODEs). Schemes preserving the essential physical property of diminishing total variation are of great importance in practice. Such schemes are free of spurious o...
متن کاملSemi - Lagrangian multistep exponential integrators for index 2 differential algebraic system
Implicit-explicit (IMEX) multistep methods are very useful for the time discretiza-tion of convection diffusion PDE problems such as the Burgers equations and also the incompressible Navier-Stokes equations. Semi-discretization in space of the latter typically gives rise to an index 2 differential-algebraic (DAE) system of equations. Runge-Kutta (RK) methods have been considered for the time di...
متن کاملA new two-step Obrechkoff method with vanished phase-lag and some of its derivatives for the numerical solution of radial Schrodinger equation and related IVPs with oscillating solutions
A new two-step implicit linear Obrechkoff twelfth algebraic order method with vanished phase-lag and its first, second, third and fourth derivatives is constructed in this paper. The purpose of this paper is to develop an efficient algorithm for the approximate solution of the one-dimensional radial Schrodinger equation and related problems. This algorithm belongs in the category of the multist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010